
14 2. WIGNER’S SEMICIRCLE LAW

5. Continuity of eigenvalues

Suppose we drop the mean zero condition in the definition of a Wigner matrix. Does
the ESD converge to semicircle law again? Such questions can be addressed by changing
the matrix so that it becomes a standard Wigner matrix (for example, subtract cJn where
Jn is the matrix of all ones). The relevant question is how the ESD changes under such
perturbations of the matrix. We prove some results that will be used many times later. We
start with an example.

Example 27. Let A be an n× n matrix with ai,i+1 = 1 for all i ≤ n− 1, and ai, j = 0 for
all other i, j. Let ε > 0 and define Aε = A + εenet

1. In other words, we get Aε from A by
adding ε to the (n,1) entry. The eigenvalues of A are all zero while the eigenvalues of Aε
are ± n

√
εe2πik/n, 0≤ k ≤ n−1 (the sign depends on the parity of n). For fixed n, as ε→ 0,

the eigenvalues of Aε converge to those of A. However, the continuity is hardly uniform
in n. Indeed, if we let n → ∞ first, LA → δ0 while for any ε positive, LAε converges to
the uniform distribution on the unit circle in the complex plane. Thus, the LSD (limiting
spectral distribution) is not continuous in the perturbation ε.

For Hermitian matrices (or for normal matrices), the eigenvalues are much better tied
up with the entries of the matrix. The following lemma gives several statements to that
effect.

Lemma 28. Let A and B be n×n Hermitian matrices. Let FA and FB denote the distribution
functions of the ESDs of A and B respectively.

(a) Rank inequality: Suppose rank(A−B) = 1. Then supx∈R |FA(x)−FB(x)|≤ 1
n .

(b) Hoffman-Wielandt inequality: Let λ1 ≥ λ2 ≥ . . . ≥ λn and µ1 ≥ µ2 ≥ . . . ≥ µn be the
eigenvalues of A and B respectively. Then, ∑n

k=1 |λk−µk|2 ≤ tr(A−B)2.

(c) Bound on Lévy distance: D(LA,LB)≤ 3
√

1
n tr(A−B)2.

If we change a matrix by making the means to be non-zero but the same for all entries,
then the overall change could be big, but is of rank one. In such situations, part (a) is useful.
If we make a truncation of entries at some threshold, then the magnitudes of changes may
be small, but the perturbation is generally of large rank. In such part (c) is useful.

PROOF. (a) Let EA
λ denote the eigenspace of A corresponding to the eigenvalue λ.

As A is Hermitian, by the spectral theorem EA
λ are orthogonal to one another and

⊕EA
λ = Cn. Fix any x ∈ R and define the subspaces

V =
M

λ≤x

EA
λ , W =

M

λ>x

EB
λ .

If the smallest eigenvalue of B greater than x is x+δ, then for any u ∈V ∩W we have
〈(B−A)u,u〉 ≥ δ‖u‖2. As rank(B−A) = 1, this shows that dim(V ∩W ) ≤ 1. From
the formula dim(V )+dim(W )−dim(V ∩W ) = n we see therefore get dim(V )− (n−
dim(W ))≤ 1. Observe that nFA(x) = dim(V ) and n−nFB(x) = dim(W ) and hence the
previous inequality becomes FA(x)−FB(x)≤ n−1. Interchanging the roles of A and B
we get the first statement of the lemma.

(b) Expanding both sides and using trA2 = ∑λ2
i and trB2 = ∑µ2

i , the inequality we need
is equivalent to tr(AB) ≤ ∑i λiµi. By the spectral theorem, write A = UDU∗ and
B = VCV ∗ where D = diag(λ1, . . . ,λn) and C = diag(µ1, . . . ,µn) and U,V are unitary
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matrices. Let Q = U∗V . Then,

tr(AB) = tr(UDU∗VCV ∗) = tr(DQCQ∗) = ∑
i, j

λiµ j|Qi, j|2.

The claim is that the choice of Q which maximizes this expression is the identity matrix
in which case we get ∑i λiµi as required. It remains to show the claim. xxx

(c) If D(FA,FB) > δ, then by definition of Lévy distance, there is some x ∈ R such that
FB(x + δ)+ δ < FA(x) (or perhaps the same inequality with A and B reversed). Order
the eigenvalues of A and B as in part (ii). Then there is some k such that

λk+1 > x≥ λk, µk−nδ > x+δ.

But then ∑(λ j−µ j)2 ≥ ∑k
j=k−nδ(λ j−µ j)2 ≥ nδ3. Thus, by part (ii) of the lemma, we

see that tr(A−B)2 ≥ nδ3. !

These inequalities will be used many times later.

6. WSL for Wigner matrices by method of moments

In this section we make brief remarks on how the method of moments can give a full
proof of Theorem 15. The method of moments will be based on equation (4).We shall need
to address the following questions.

(1) To study the expected ESD, we shall have to look at (5). However, if Xi, j do not
have higher moments, exprssions such as E[Xi1,i2 . . .Xi2q,i1 ] may not exist. For
instance, if ir are all equal, this becomes E[X2q

1,1].
(2) Secondly, the evaluation of E[Xi1,i2 . . .Xi2q,i1 ] used Wick formulas, which apply

to joint Gaussians only.
(3) Lastly, we must prove the result for the ESD itself, not just the expected ESD.

We now indicate how these problems are to be addressed.

(a) The main idea is truncation. But to prevent the complication that diagonal entries are
allowed to be different, let us assume that Xi, j, i ≤ j are all i.i.d. from Fix any δ > 0
and find A > 0 large enough so that E[|X1,2|21|X1,2|>A] ≤ δ. Let αA := E[X1,21|X1,2|≤A] =
−E[X1,21|X1,2|>A] and βA = Var(|X1,2|21|X1,2|≤A). By choice of A we get

|αA|≤
√

E[|X1,2|21|X1,2|>A]≤
√

δ

βA = E[|X1,2|21|X1,2|≤A]−α2
A ∈ [1−2δ,1]

Define,

Yi, j = Xi, j1|Xi, j |≤A. |Yi, j|≤ A. Perhaps not centered or scaled right.

Zi, j = Yi, j−αA. |Zi, j|≤ 2A. Centered, but entries have variance βA, not 1.

Let LX
n be the ESD of Xn/

√
n and similarly for Y and Z. we want to show that D(LX

n ,µs.c)
P→

0. We go from LX
n to µs.c in steps.

(A) By part (c) of Lemma 28

D(LX
n ,LY

n )3 ≤ 1
n2 ∑

i, j
|Xi, j|21|Xi, j |>A and hence E

[
D(LX

n ,LY
n )3

]
≤ δ.
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(B) Since Z = Y −αAJn, by part (a) of Lemma 28 we see that

D(LZ
n ,LY

n )≤ sup
x∈R

|FLY
n
(x)−FLZ

n
(x)|≤ 1

n
.

(C) Z is a (scaled) Wigner matrix with entries having variance βA and such that the entries
are bounded random variables. For Z, the moment method can be tried, and in step
(b) we show how this is done. Thus assume that we are able to show that

LZ
n → µβA

s.c, and LZ
n

P→ µβA
s.c.

(D) Lastly, we leave it as an exercise to show that ε(δ) := D(µβA
s.c,µs.c)→ 0 as δ→ 0.

Combining (A)-(D), we get

D(LX
n ,µs.c) ≤ D(LX

n ,LY
n )+D(LY

n ,LZ
n )+D(LZ

n ,µβA
s.c)+D(µβA

s.c,µs.c)

≤
(

1
n2 ∑

i, j
|Xi, j|21|Xi, j |>A

) 1
3

+
1
n

+D(LZ
n ,µβA

s.c)+ ε(δ)

The first term goes in probability to (E[|X1,2|21|X1,2|>A])1/3 ≤ 3√δ. The second and third
terms are not random and go to zero as n→ ∞. Hence

P
(

D(LX
n ,µs.c) > 2 3√δ+2ε(δ)

)
→ 0

as n→∞. This implies that D(LX
n ,µs.c)

P→ 0. This is precisely the same as saying LX
n

P→ µs.c.

(b) Let us assume that Xi, jbounded random variables. Then we again come to the equa-
tion (5) for the moments of Ln. We do not have Wick formula to evaluate the expectation,
but because of independence of Xi, j for i < j, the expectation factors easily. For simplicity
let us assume that the entries are real valued

E
[
Xi1,i2 . . .Xip,i1

]
= ∏

j≤k
E

[
X

Nj,k(i)
1,2

]
(8)

where Nj,k(i) = #{r ≤ p : (ir, ir+1) = ( j,k) or (k, j)}.

As always, when we fix p, ip+1 is just i1. As Xi, j all have mean zero, each Nj,k(i) and Nj(i)
should be either zero or at least two (to get a non-zero expectation). Hence, the number of
distinct indices that occur in i can be atmost q.

From a vector of indices i, we make a graph G as follows. Scan i from the left, and
for each new index that occurs in i, introduce a new vertex named v1,v2, . . .. Say that r≤ p
is associated to vk if ir is equal to the kth new index that appeared as we scanned i from
the left. For each r ≤ p, find v j,vk that are associated to r and r +1 respectively, and draw
an edge from v j to vk. Denote the resulting (undirected) multi-graph by G(i) (multi-graph
means loops are allowed as well as more than one edge between the same pair of vertices).

Example 29. Let p = 7 and i = (3,8,1,8,3,3,1). Then G(i) has vertices v1.v2,v3,v4
and edges [v1,v2], [v2,v3], [v3,v2], [v2,v1], [v1,v1], [v1,v3] and [v3,v1]. We can also write
G(i) as a graph (loops allowed) with edges [v1,v1], [v1,v2], [v2,v3], [v1,v3] with weights
(multiplicities) 1,2,2,2 respectively.

Observe that if there is a permutation π ∈ Sn such that j = π(i) (that is jr = iπ(r)), then
G(i) = G(j). Conversely, if G(i) = G(j), then there is such a permutation π.
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Example 30. Let i = (1,2,1,3,4,3) and j = (1,2,3,2,1,4). Then G(i) and G(j) are both
trees with four vertices, v1,v2,v3,v4. However, in G(i), the vertex v2 is aleaf while in G(j)
v2 is not. In our interpretation, these two trees are not isomorphic, although combinatorially
these two trees are isomorphic. In other words, our graphs are labelled by v1,v2, . . ., and
an isomorphism is supposed to preserve the vertex labels also.

The weight of the graph, w[G] := ∏ j≤k E
[
X

Nj,k(i)
1,2

]
can be read off from G. Let Nn[G]

denote the number of i ∈ [n]p such that G(i) = G.
Observe that Nn[G] = 0 unless G is connected and the number of edges (counted with

multiplicities) in G is equal to p. Further, w[G] = 0 if some edge has multiplicity 1. We
exclude such graphs in the discussion below. If the number of vertices of G is k, then
Nn[G] = n(n−1) . . .(n− k +1).

There are atmost $p/2% distinct (counting without multiplicities) edges in G since each
must be repeated at least twice. Hence, the number of vertices in G is atmost $p/2%+ 1.
If p is even this is attained if and only if G is a tree and i is a depth-first search of G
(hence each edge is traversed twice, once in each direction). If p is odd and there are
$p/2%+ 1 vertices, then some edge will have to be traversed three times exactly, and that
is not possible if G is a tree (since i starts and ends at the same vertex). Note that because
of the way our isomorphism works, isomorphism of trees is really isomorphism of plane
trees5.

Z
xpLn(dx) =

1
n1+ p

2
∑

i
w[G(i)]

=
1

n1+ p
2

∑
G

Nn[G]w[G]

→ #
{

of plane trees with vertices v1, . . . ,vp/2
}

= Cp/2

where Cp/2 is defined to be zero if p is odd.

(c) Fix p and consider Mn =
R

xpdLn(x). We know that E[Mn]→Cp/2 (defined to be zero

if p is odd). It will follow that Mn
P→Cp/2 if we can show that Var(Mn)→ 0. Now,

Var(Mn) = E
[
M2

p
]
−E[Mp]2

=
1

n2+p

{

∑
i,j∈[n]p

E

[
p

∏
r=1

Xir ,ir+1Xjr , jr+1

]
− ∑

i,j∈[n]p
E

[
p

∏
r=1

Xir ,ir+1

]
E

[
p

∏
r=1

Xjr , jr+1

]}

which can again be analyzed by some combinatorics. Basically, in the second summand,
the leading order terms come from cases when both G(i) and G(j) are trees. But these two
trees combined together will occur as G(i, j) in the first summand. Thus all leading order
terms cancel, and what are left are of a lower power of n then in the denominator. The
calculations will lead to Var(Mn)≤C(p)n−2 for some constant C(p). Hence Mn converges
in probability. For more details we refer to the book ?.

We have shown that
R

xpLn(dx) converges in probability to
R

xpdµs.c(x). Does that
imply that

R
f dLn converges in probability to

R
f dµs.c? Does it imply that D(Ln,µs.c)

converges in probability to 0?

5A plane tree is a tree with a marked root vertex, and such that the offsprings of every individual are ordered.
A good way to think of them is as genealogical trees, where in each family the offsprings are distinguished by
order of birth.


